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Nearly homogenous elastic shear on a molecular level rather than localized defect motion 
was considered to be the primary strain mechanism prior to yielding. The greatest or ideal 
value of the yield point for an amorphous polymer in the absence of the thermal activa- 
tion was calculated. The theory involves a picture of the molecular motions under a shear 
stress involving three interconnected processes: 1. Shearons or intermolecular shear, 
2. Rotons or intramolecular shear, 3. Tubons or motion along the covalent bond. The 
shear resistance was based on the stress to overcome the van der Waal's bond using a (6-12) 
potential. The model assumes that all atoms move co-operatively by the above motions, 
up to the point of yielding. Temperature was considered only as it affects the modulus, 
but the theory has not been extended to include thermal activation. The predicted value 
of shear yield point divided by shear modulus is <0.064 to 0.092; a review of all the 
experimental data obtained by extrapolations to 0 K gives an average value of 0.076 + 
0.03. 

1. I n t r o d u c t i o n  
There are two viewpoints of shear yielding. One 
view considers the polymer as a viscous liquid that 
flows under the smallest applied stress given 
enough time, and the other considers the polymer 
as an elastic-plastic solid with a critical stress for 
yielding. Both viewpoints are valid depending on 
the temperature. At high temperatures, around Tg 
(glass transition temperature), the viscous view- 
point is more applicable and at the lower tempera- 
tures, the critical stress concept is better. There is 
an intermediate range of temperature where either 
or both concepts may best describe yielding. 

Most theories on the yielding of amorphous 
polymers describe the phenomenon in continuum 
terms invoking concepts of free volume, springs 
and dashpots, and viscosity. There are some 
theories that take a molecular viewpoint, such as 
chain flexing by Robertson [1], chain twisting by 
Yannas and Lunn [2], chain bending via discli- 
nations by Argon [3], a dislocation mechanism by 
Bowden and Raha [4], the breaking of the van der 
Waals' bond by Brown [5], and a co-operative 
model of molecular interactions by Joseph [6]. 

In this paper the amorphous polymer is des- 
cribed in terms of the average arrangement of the 
molecules relative to an applied shear stress. The 
motions of the molecules are described as the 
stress increases. The relationship between the 
stress and the intermolecular forces is calculated. 
Finally the maximum stress that can be sustained 
by the solid is calculated; this stress is the yield 
point. This theoretical yield stress is like the ideal 
yield strength that has been calculated for perfect 
crystals in that no defect mechanism is introduced 
and the contribution of thermal activation has 
been omitted. 

Many calculations have been made of the ideal 
tensile and shear strength of perfect crystals. These 
calculations show that the ideal strength is propor- 
tional to the elastic modulus. The ratio of ideal 
tensile strength to Young's modulus, Crma,,/E , and 
shear strength to shear modulus, Tmax/G, depend 
on the crystal structure, and the nature of the 
interatomic potential. The book by Kelly [7], 
"Strong Solids", covers the literature on this sub- 
ject. 

The original calculation of the theoretical shear 
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stress of a crystal was by Frenkel [8] whose result 
is 

1 b/h (1) 'rm <la = 2--7 

where b is the repeat distance in the shear direc- 
tion and h is the spacing of the shear planes. Kelly's 
review of the values of the theoretical shear stress 
of crystals show that they range from Tmax/G = 
0.24 to 0.034. The largest ratios are for the dia- 
mond cubic structures whose interatomic bonds 
are directional and the smallest values are for close 
packed structures such as zinc and gold where 
central force bonding predominates. 

The discrepancies between the ideal strength 
and the experimental values are generally attri- 
buted to defects in the crystals since differences in 
the methods of calculation by various investigators 
are relatively small. Thus surface imperfections, 
such as cracks, reduce the tensile strength and 
mobile dislocations reduce the shear strength. An 
ordinary zinc crystal has a yield point as low as 
lO-SG whereas the theoretical strength is about 
0.04G. 

Brenner [9] produced small whiskers of metals 
whose shear strength was near the theoretical value; 
for copper and silver values of Tmax/G of 0.027 
and 0.036 were found compared to a theoretical 
value of 0.039. 

For amorphous polymers, a preliminary attempt 
[5] to calculate an ideal shear strength based on 
the force to separate the van der Waals' bonding 
using a Lennard-Jones potential gave a value of 
amax/E = 0.037 where O'ma x is the yield point in 
tension. Yannas and Lunn [2] calculated the shear 
yield point of a polymer based on the twisting of a 
polymer chain relative to the surrounding atoms 
(strophons). Using a Lennard--Jones potential, 
Yannas and Lunn showed that Omax/E = 0.019. 

Bowden and Raha [4] calculated a value of the 
shear strength based on a dislocation model. 
Bowden and Raha [4] used a continuum view- 
point of the polymer. They assumed that the 
theoretical strength was determined by the energy 
to nucleate and grow a dislocation loop in an 
initially dislocation free material. Thus, their value 
of Tm~/G corresponded to Frenkel's value at 0 K. 

Argon [3] calculated the shear strength of an 
amorphous polymer based on the energy to 
nucleate and separate a pair of disclinations. The 
calculation was based on a continuum viewpoint 
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giving a first predicted value at 0 K of Tmax/G = 
0.16 and a later value of 0.12 [10]. 

The Bowden and Raha model did not involve 
the long-chain nature of polymers. In Argon's 
model the yield process was based on extending an 
already kinked chain and thereby requiring the 
formation and separation of wedge disclinations. 
Argon did not take into account that the yield 
process could also involve intermolecular shear. 

Isotropic amorphous polymers are often re- 
garded as weak materials with low shear strength. 
However, it is remarkable, how strong an ordinary 
isotropic linear polymer is at low temperatures 
(well below Tg) when the unit of strength is 
"rmax/G. For ordinary polymers, the value of 
'Y'max/G ranges from about 0.03 to 0.12 for tem- 
peratures below Tg. These values are comparable 
to the ideal strength of a face centre cubic crystal 
joined by a Lennard-Jones potential for which 
Mackenzie [11 ] and Tyson [12] calculated Tmax/G 
to be 0.06. 

In this paper a calculation is made of the theor- 
etical shear strength of an amorphous linear poly- 
mer at temperatures below Tg. The polymer is 
viewed as a random close packed structure consist- 
ing of molecular chains bonded by a Lennard- 
Jones potential. The calculation is based on the 
general types of molecular motion that are ex- 
pected under a shear stress at low temperatures. 

2. Theow 
2.1. S t ruc tura l  model  
Bernal [13] has shown that an amorphous liquid 
consisting of spherical atoms of the same size cor- 
responds to a random close packed structure. The 
average number of closest neighbours is about 11 
compared to 12 for the perfect crystal. It is also 
observed that the density of an amorphous poly- 
mer is only about 15% different than that of the 
crystalline state. Both of these observations indi- 
cate that the amorphous state tends toward one of 
closest packing. Central force fields such as the van 
der Waals' bond promotes this close packing. The 
packing is not as close as in an amorphous aggre- 
gate of small molecules because there are restraints 
exerted by the strong covalent bond along the 
chain. The covalent bond also restricts the degrees 
of motion of the polymer molecule. 

Since the polymer is randomly arranged, the 
energy of the van der Waals' bond does not have 
one or more discrete values as in the case of a 
perfect crystal. It is necessary to think in terms of 



an average value of the van der Waals' bond. This 
average value depends on the position of minimum 
energy occupied by the typical atom in its close- 
packed arrangement. It is important to realize that 
the average value of the van der Waals' bond also is 
proportional to the shear modulus of the material. 

For temperatures below Tg the close packed 
arrangement hardly changes. The average value of 
the van der Waals' bond does increase with de- 
creasing temperatures; the concomitant increases 
in shear modulus reflects the increase in bond 
strength. Since the calculated shear strength is in 
terms of the shear modulus, the final result does 
not depend explicitly on temperature as long as 
the state of close packing remains essentially inde- 
pendent of temperature. The contribution of 
thermal activation via the Eyring formalism will be 
considered in another paper. 

2.2. The average molecular motion during 
yielding 
The process of yielding begins with the initial 
application of the stress and ends when a measur- 
able amount of plastic strain is produced. Plastic 
strain is the irreversible strain observed after un- 
loading the material. In this model of yielding, all 
the atoms move together in the elastic range so 
that .the nearest neighbours are preserved up to the 
yield point. On a molecular scale most of the 
atoms move co-operatively, i.e. in phase with the 
stress. There is a small amount of out-of-phase 
motion that is associated with the usual visco- 
elastic part of the strain. There are some atoms 
which are more or less strongly bonded than the 
average, and therefore, lag the applied stress. These 
out of phase atoms are small in number and are 
constrained to move in ragged unison with their 
nearest neighbours. 

There may also be localized regions of inhomo- 
geneous strain such as dislocations, disclinations or 
strophons [2]. It is not thought that the long 
range motion of these defects is primarily respon- 
sible for the yield stress and the attendant plastic 
strain. It is visualized that the yield point is deter- 
mined by the stress required to displace practic- 
ally all the atoms to the state of yielding. How- 
ever, the plastic strain need not be homogeneous 
throughout the material. The value of the yield 
stress does not hinge on the production of a homo- 
geneous plastic strain on a macroscopic scale. 
What probably happens is as follows: practically 
all the atoms are brought to the point of yielding 

and then small perturbations in strain or bond 
strength produce localized plastic strain. The plas- 
tic strain rate need only be sufficient to satisfy the 
imposed strain rate of the testing machine. 

The co-operative molecular motions during the 
yield process involves two important conditions: 

1. no covalent bonds must be broken, and 
2. nearest neighbours are preserved up to the 

yield point. 
The first condition is based on the experimental 
observation that very few molecular chains are 
broken at yielding. The second condition is based 
on the lack of experimental support for the notion 
that yielding involves nucleation and propagation 
of discrete defects through the material. Based on 
these conditions only a few basic types of molecu- 
lar motion are required in order to conform with a 
homogeneously applied shear strain. What might 
appear to be a great complexity of motions, since 
the amorphous structure seems complex, can be 
analysed in terms of three types. 

2.3. Basic motions of long chain molecules 
under simple shear 
A random array of linear molecules bonded by a 
van der Waals' force are being considered. The 
three principal types of  motion which occur 
during the application of a homogeneous simple 
shear strain without breaking covalent bonds: 

1. Shearon - intermolecular shear 
2. Roton - intramolecular shear 
3. T u b o n - m o t i o n  parallel to the covalent 

bond. 
The resistance of these simultaneous motions to 
the applied shear stress determines the yield point 
of the amorphous polymer. First. the geometry of 
these motions will be discussed. Then the resist- 
ance of each of these motions will be calculated. 
Finally their combined resistance will be deter- 
mined as it is their combined coordinated motions 
that determines the yield point. 

2.3. 1. Shearon motion 

Shearon motion occurs where the molecular chain 
lie in the plane of shear so that parallel planes of 
atoms shear passed each other. The covalent bonds 
offer no restraints to this motion. Each atom in 
the plane passes from its initial site of minimum 
energy to an adjacent energy well. The displace- 
ment of all atoms in a plane is the same except for 
a small amount of out-of-phase motion. The path 
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(e) (b) 
Figure 1 (a) Typical localized close packing. Atom A shears relative to plane BCDE. (b) An approximately close packing. 
Atom A shears relative to plane BCDEF. 

of  a typical atom is shown in Fig. 1 a which repre- 
sents the typical close-packed arrangement through- 
out the polymer. 

In Fig. la atoms B, C, D and E form the shear 
plane. Atom A initially lies in the minimum energy 
site formed by atoms B, C and D and is directed, 
by the applied shear stress, through the valley 
between atoms C and D. The major resistance is 
the attractive force between atoms A and B. The 
yield stress corresponds to the point where the 
attractive force between atoms A and B is a maxi- 
mum. Then atom A ends up in the adjacent energy 
well formed by atom C, D and E, thus producing 
plastic strain. 

The close packed arrangement shown in Fig. la 
will not  be the same throughout the polymer. Fig. 
lb shows a slight modification where the initial 
site of  the A atom is formed by a less close packed 
nest of  four atoms B, C, D and E. Under the shear 
stress, the resistance to the motion of  atom A 
comes from the attractive forces from atoms D 
and B as A passes through the valley between 
atoms C and E and finally falls into the adjacent 
energy well formed by atoms C, E and F. The 
difference in shearon resistance in Fig. la is not  
greatly different than in Fig. lb. 

2.3.2. Roton* motion 
Roton motion involves the co-operative shear be- 
tween atoms joined by  the covalent bond. Roton 
shear occurs for molecular chains that intersect the 
plane of  shear and are initially inclined against the 
direction of  the shear stress. In Figs. 2a and b is a 
molecule with the covalent bond along a - b  and 
a - b  is inclined against the arrows representing the 
direction of shear. As the shear stress is applied the 
chain of  atoms rotate as illustrated in Figs. 2a to c. 

The roton motion is such that the length of  the 
covalent bond remains essentially constant. It is to 
be noted that the atoms adjacent to the roton may 
move as shearons or rotons and they maintain the 
close-packed structure. Note that during roton 
motion the covalently bonded atoms shear co- 
operatively by  rotating about a point centred on 
the covalent bond. 

The basic resistance to roton motion is about 
the same as for a shearon. If  in Fig. l a atom A 
were covalenfly bonded to atom C, roton motion 
would occur such that atoms A and C shear in 
opposite directions. The basic resistance to the 
roton motion is still the attractive force between 
atoms A and B. The difference between shearon 
and roton motion can be seen in Fig. la. In 
shearon motion atom A moves while the adjacent 
plane BCDE need not move, but  in roton motion 
it must move as A moves. 

For a flexible chain, the entire length of  chain 
does not have to move for roton motion to occur. 
As shown by the roton in Fig. 3, only the portion 
of  the chain bc underwent roton motion. The 
entire chain may have rotated nearly up to the 
yield strain which is only about 17%, but the final 
yielded state would occur in that part of  the 
material which was weakest. A point of  weakness 
may also be viewed as a place where the stress is 
concentrated. The calculation of the yield stress 
does not require that the plastic strain be homo- 
geneous, but  only that all the atoms be brought up 
to the point of  yielding under an almost homo- 
geneous elastic strain. 

When part of  a molecular chain is inclined in 
the direction of  the shear stress as in the portion 
bc in Figs. 3 and 2c, it is in a sessile state. In the 
sessile state the roton cannot rotate further with- 

*As pointed out by Professor F. C. Frank roton had been used for a quantum of rotational energy. 
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out stretching the strong covalent bonds. Thus, we 
can classify a roton as being glissile if  it is inclined 
against the shear stress and sessile if  it is inclined in 
the direction of  the shear stress. Shearon mot ion 
in the vicinity of  a sessile roton becomes inhibited 
so that a localized inhomogeneous strain occurs. 

The molecular chain may be part shearon and 
part roton as shown in Fig. 4a. The part ab is a 

Figure 2 Roton motion going from (a) to (c). 

glissile roton and the part bc is a shearon. The part 
bc does not  have to be in the shear direction to be 
a shearon; it need only lie in the shear plane. 

There are various possibilities for the mot ion of  
the combined shearon and roton in Fig. 4a. All of  
length ab may undergo roton motion until it be- 
comes sessile as in Fig. 4b. Now shearon bc cannot 
move without  pulling the length of  chain ab along 
with it. The force required to pull on the chain ab 
adds to the shear resistance of  the shearon. As will 
be described below the pulling of  a chain relative 
to stat ionary neighbouring atoms is called a tubon. 

Another  possible motion for the shea ron- ro ton  
combination in Fig. 4a is shown in Fig. 4c where 
the mot ion of  the shearon creates a bend in the 
port ion ab at the point d so that, in effect roton 
mot ion occurred along db. This roton motion 
could travel toward point a until ab became com- 
pletely sessile. 

b 
C 

C1 

C C 

a 

Figure 3 Roton motion occuring gradually along the chain ab going from left to right along the figure, bc is the part of 
the chain that has undergone roton motion. 
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Figure 4 Combined roton and shearon motions. (a) is the initial conformation, (b) roton motion with or without 
shearon motion of bc, (c) shearon motion ofbc with roton motion along bd, (d) shearon motion along bc with point 
a fixed so that chain dragging occurs along ab. 

There is another possibility of  motion for the 
shearon-ro ton  combination shown in Fig. 4d. The 
shearon bc displaces and the chain ab is curved and 
dragged so that a complex inhomogeneous array of  
atomic displacements occur around the dragged 
chain. This mode is not  expected as it requires too 
much energy. 

2.3.3. Tubon motion 
Fig. 5 shows a molecular chain whose parts ab and 
cd lie in different shear planes and they are con- 
nected by a sessile roton bc. Under the applied 
shear stress, ab and cd translate to the left and 
right, respectively, while the chain is pulled upward 
at b and pushed upward at c. This co-ordinated 
motion causes the chain bc to move through a 
tube of  stationary neighbours. Therefore, this 
motion is called a tubon. The tubon motion is 
non-affine and does not contribute to the macro- 
scopic shear strain. Also the tubon motion does 
not interact with the applied shear stress. As a 
result the tubon produces an added resistance to 
that of  the connecting shearons. 

The tubon moves relative to its stationary 
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nearest neighbours. For the case of  closest packing 
each atom that moves as a tubon experiences a 
change of  about 7 nearest neighbours compared to 
1 for a shearon. The total resistance of the tubon 
is proportional to its length. The tubon resistance 
must be added on to that of  the shearon in order 
to determine the overall resistance of  the shearon. 

Tubon motion produces another type of  non- 
affine deformation. Tubon motion in conjunction 
with the shearon motions, as in Fig. 5, shows 
shearons ab increasing in length and cd simultan- 
eously decreasing. This causes a net flux of  atoms 
from ab and toward dc in the form of a non-affine 
diffusive type of  motion. Altogether tubon motion 
produces a circulation of  atoms in the form of a 
concentrated movement along the tubon and the 
diffusive motion between the shearons. It is the 
accompanying shearon motion that contributes to 
the macroscopic shear strain. 

Another feature of  tubon motion should be ob- 
served. When an atom enters or leaves a tubon 
from or to the adjoining shearon, it turns the 
corner. This turning motion will be a combination 
of  roton and tubon motion depending on the 
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( a )  (b) 
Figure 5 Shearon plus tubon motion (a) is the initial conformation. 

curvature of the corner which in turn depends on 
the flexibility of the molecular chain. 

Fig. 6 shows examples of glissile and sessile 
tubons. In Figs. 6a and b are glissile tubons with 
the motion from c to b in Fig. 6a and from b to c 
in Fig. 6b under the co-ordinated motion of the 
shearons. Figs. 6c and d show sessile tubons since 
the chain bc is being pulled from opposite direc- 
tions in Fig. 6c and compressed from opposite 
directions in Fig. 6d. 

Shearon, roton, and tubon motion may occur 
along the length of the same molecule. Fig. 7a 
shows the initial conformation. In Fig. 7b roton 
and shearon motion has occurred. Fig. 7c shows 
the subsequent conformation after tubon and 
shearon motion. No doubt there are many other 
combinations of motion, but the focus on shear- 
ons, rotons, and tubons as the unit processes helps 
us to visualize the individual molecular motions 
that produce the observed macroscopic strain. 

4 - -  '( '-- 

( a )  (b )  

a b b a 

(c )  (d )  
Figure 6 (a) and (b) glissile tubon motion with shearons (c) and (d) sessile conformations. 
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Another important observation about these 

three motions is that they tend to produce mol- 
ecular orientation. During roton motion the chain 
rotates toward the same direction relative to the 
applied stress. If  during tubon motion, a connect- 
ing shearon increases in length as the tubon length 
decreases, this combined motion produces an over- 
all increase in molecular orientation. Pure shearon 
motion alone neither increases or decreases the 
degree of orientation in simple shear. 

2 .4 .  S tress  t o  m o v e  a s h e a r o n  
Fig. 8 is a two-dimensional view of a shearon. The 
plane of atoms EAF move co-operatively relative 
to the shear plane of atoms GBCD. Taking atom A 
as the typical atom, it is seen that when A moves 
out of  the energy well formed by B and C its 
motion is resisted by the stretching of the AB 
bond. The AC bond is compressed. The AG and 
AD bonds may be neglected partly because they 

Figure 8 Illustrates sbearon motion with co-operative 
shear of atoms E, A and 1: relative to atoms G. B. Cand D. 

Figure 7 (a) is the initial conformation, (b) shearon and 
roton motion occurred, (c) subsequent shearon and tubon 
motions. 

tend to cancel each other, but  primarily because 
the Lennard-Jones potential is short range. 

Fig. la shows the actual model used for the cal- 
culation. The model is based on the local close 
packing being the same as in a face centred cubic 
structure for {1 1 1} (1 1 2) shear. As the A atom 
moves under the applied shear, the AC and AD 
bonds become repulsive and the AB bond is attrac- 
tive. The much longer AE bond can be neglected 
since the maximum resistance to shear occurs at a 
shear strain of  17N without thermal activation and 
at about 7% strain in the actual material. Tyson 
did a computer calculation for a face centred cubic 
crystal with a Lennard-Jones  potential using 
about 51 atoms and his results are only about 20N 
less than the three bond model of Fig. la. It is 
interesting to present the calculation for the three 
bond model because it gives a direct insight into 
the resistance of the shearon. The assumption that 
the local structure of the shearon is the same as 
that in a face centre close packed crystal means 
that the calculated results are an upper bond be- 
cause the random close packing of  the glassy poly- 
mer would be expected to offer less resistance to 
shearon motion than that in a perfect crystal. 

Fig. 9 shows the coordinate system for the cal- 
culation. Points A, B, C and D represent the centre 
of  the atoms shown in Fig. la under zero stress. 
The shear stress is applied parallel to the BCD 
plane in the y direction. The A atom displaces 
along AA' and the atoms B, C and D are assumed 
to remain fixed. The coordinates of  the atoms are 
given in Table I. Let al = the length of the AB 
bond, a2 = the length of  the AC and AD bonds, 
$1 = the force of  the AB bond, Sz = the force of 
the AC and AD bonds, 7 = (3/2)U2d/ao = shear 
strain, and F = shear force on atom A in y direc- 

2 2 4 8  
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Figure 9 Coordinate system for Table I. 
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tion. The length and direction of the bonds can 
be calculated from the coordinates in Table I. 

A summation of forces on atom A in the z 
direction gives 

&~at + 2&/a2 = 0 (2) 

when no force is acting perpendicular to the shear 
plane. The summation of forces on A in the y 
direction gives 

aT aT (3T 1'2 d + F  = 0 ( 3 )  

at and a2 determine 7 where 

(4) 
ao/ \ao/ 

Combining Equations 2 and 3 give 

(3)a/2 ( ) 
F -  2 Sa ao (5) 

\a~ ,! 

The energy of a van der Waals' bond may be 
represented by the Lennard-Jones potential 

1 
where B is the energy when a = ao. The force of 
the bond is given by 

dE 12B [ ( ~ ) ' _  (~_o) 13] 
S -  da ao . (7) 

T A B L E I Coordinates of the atoms, a 0 is the equilib- 

r ium bond length, d is the shear displacement,  and h is the 

increase in distance of  a tom A above the shear plane 

Atom x y z 

A 0 d h + (2/3)mao 
B 0 --ao/(3) 1/2 0 
C ao/2 a0/2(3) l~ 0 
D --ao/2 a0/2(3) 1~ 0 

Substituting Equations 7 into 5. 

F_6(3)X/2B[(a__~olS (ao__] 141 

ao [ \ a l l - - \ a l l  J" (8) 

The yield point corresponds to the maximum value 
of F. Setting dF/dal = 0, the value of (ao/aD at 
the yield point is 

(:) ao = (9) 
Y 

and 

6(3)roB 
/;max - - -  (0.203) (10) 

a0 

From Equations 2, 4 and 9 

(a~/) = 1 . 0 1 4 6 y  (e l )  

and the yield strain is 

7y = 0.165 (12) 

It is useful to obtain the shear stress for yield- 
ing Tm ~ in terms of the shear modulus. 

The shear stress, T = F/A, where A is the area 
of shear plane per atom. The shear modulus is de- 
fined as 

C = (13) 
=0  

By differentiating Equation 8 with respect to 3' 
and making use of Equations 2, 4 and 13 

B G 
aoA 12(6) 1/2 

and from equation 10 

Tmax = 0.0718G 

(14) 

(15) 

G is proportional to (3/2)l/2B/aoA which is the 
bond energy per unit volume to the cohesive 
energy density of the material. 

The computer calculation by Tyson using 51 
atoms gave ~Tmax/G = 0.061 and 3'y = 0.13 for a 
perfect face centred cubic crystal. If the AE bond 
(Fig. 1) were included in the calculation the result 
in Equation 15 would be reduced to that of 
Tyson's solution because the AE bond assists the 
applied stress. We will use Tyson's results as an 
upper bound for the shear resistance of a shearon. 

2.5. Calculat ion of the relative amounts of  
each mot ion  
It is assumed that the yield stress is determined by 
the resistance of the co-operative homogeneous 
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motion of all the atoms in the material. The co- 
operative motion is assumed to take place by the 
combined shearon, roton and tubon motion as 
described in Section 2.3. The calculation is based 
on an estimate of the fractions of the total motion 
that is contributed by shearons, rotons and tubons. 
Then if the shear resistance is known for each of 
the three motions, the overall shear resistance of 
the polymer can be calculated. 

The random close packed structure can be 
visualized as a random fine grain polycrystalline 
face centred cubic crystal. There are six (1 1 0) 
close packed directions. The direction of the 
covalent bond in the back bone is always a close 
packed direction. The number of nearest neigh- 
bours in a face centred cubic crystal is 12. For a 
random close packed structure of spherical atoms 
it is about 11. For a random close packed array 
of linear chains consisting of spherical atoms, it 
is estimated to be about 10 because the restraints 
of the covalent bond give a less close packing than 
in a random structure of spherical atoms. The 
difference in density betweeen the amorphous and 
crystalline state is consistent with this estimate. 
For example the density of a perfect crystal of 
polyethylene (PE) is 1.00 and the density of 
liquid PE extrapolated to room temperature is 
0.86 g cm -3. 

If  on average there are 10 nearest neighbours, 
then the two nearest neighbours are covalently 
bonded. Therefore, 1/5 of the six (1 1 0) directions 
are along the covalent bond. 

The slip planes are {111}. Three (110)  
directions lie in a slip plane and three are out of 
it. Therefore, 1/5 x 3/6 or 1/t0 equal the fraction 
of nearest neighbour bonding directions that are 
out of the slip plane and are in a convalent bond 
directions. This is the fraction of the total motion 
that involves rotons and tubons. Since there are 
as many tubons as rotons, this estimate gives the 
following results: 9/10 shearons, 1/20 rotons, 
and 1/20 tubons. 

Another estimate can also be made. Consider 
the unit shearon process illustrated in Fig. l a. If  
the bond between atom A and B is a van der Waals' 
bond, shearon motion can occur; otherwise a 
roton or tubon exists. If  the number of nearest 
neighbours is 10 then two are covalent bonds 
thus 2/10 of the motions are roton and tubon 
and of these half should be tubons. Consequently 
there would be 8/10 shearon 1/10 roton and 1/10 
tubon motion. 
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Both estimates indicate that shearon motion 
predominates. The predominance of shearon 
motion can be observed by the following exper- 
iment. Place long strings of beads randomly in a 
flexible transparent bag. Shear the bag and it will 
be observed that the dominant motion consists 
of  shearons and rotons. The amount of chain 
pulling which is characteristic of tubon motion 
is relatively small. However, the resistance of 
tubon motion is much greater than that for 
shearons and rotons. 

2.6. Calculation of the yield point 
Since all the atoms are assumed to move co-oper- 
atively, the yield point is the sum of the resistances 
from each type of motion. 

~ ' m a , ,  _ fS ~'m~(S) +~'rm~,(n) +frTma~(7) 
G G G G 

(16) 

where f s ,  fR and fT are the fractions of each type 
of motion as estimated in the previous section. 
Tmax(S) etc., are the shear resistances associated 
with each type of motion. Tmax(S)/G was calcu- 
lated above using three nearest neighbour model. 
It would be better to use Tyson's [12] result for 
the ideal strength of a fc  c crystal as this would be 
an upper bound for shearon motion in a random 
close packed structure where Tm~(S)/G = 0.061. 

The resistance of roton motion is about the 
same as for shearon motion. If in Fig. la, atom A 
is covalently bonded to atom C or D then roton 
motion is involved. The primary resistance to the 
motion of atom A arises from the stretching of the 
AB bond. This stretching force is not much differ- 
ent for roton or shearon motion because the bond 
lengths between A and C and A and D remain 
little changed whether they be covalent bonds or 
van der Waals' bonds in compression. 

The tubon motion is much greater than that 
for a shearon. During shearon motion the typical 
atom breaks one nearest neighbour bond, but in 
tubon motion an atom breaks seven nearest neigh- 
bour bonds. This result can be obtained by observ- 
ing that two nearest neighbour atoms in an f c c  
crystal have five nearest neighbours in common, 
excluding themselves. Thus tubon resistance would 
be at least seven times stronger than for a shearon 
on this basis. There is also an additional resistance 
to tubon motion besides that required to break 
bonds. During tubon motion all of the surrounding 



atoms must be expanded in order to allow an 
atom to pass to an adjacent site in the direction 
of  the covalent bond. This resistance would 
approximately correspond to the energy required 
to expand a cylindrical hole in an infinite solid. 
The expansion would depend on the opening 
required by an atom as it passed through its 
saddle point. The resistance for breaking seven 
bonds should be approximately seven times for 
a shearon or 7 x [Tmax(S)/G ] = 0.43. Adding the 
resistance of  expanding the surrounding atoms 
[Tmax(T)/G ] would be greater than 0.43. The 
question arises as to whether tubon motion can 
occur with a lower resistance than this value. 

The are two existing calculations for the stress 
to pull a molecular chain through a polymer. 
Kausch and Becht [14] calculated the force to 
pull an infinitely long molecule from a crystal 
of  polyethylene. They calculated a force of  
i .37 x 10-4dynes. * The Kausch and Becht calcu- 
lation was for an infinite chain and involved a 
co-operative motion along the chain analogous 
to a dislocation type motion. They state that the 
resistance for the infinite molecule is 15.8 times 
that of  a mer. Tubons have a finite length and the 
resistance of  the tubon depend on its length where 
the length is determined by the separation of  the 
connecting shearons. Since the fraction of  tubons 
and rotons are only about 1/5 to 1/10, then it is 
not expected that the length of  a tubon will be 
more than 10mers long. Therefore, the resistance 
of  a met o f a  tubon is estimated to be 1.37 x 10-4 /  
15.8 dynes. Now the resistance of  the tubon adds 
onto the shear resistance of  the adjoining shearon. 
Therefore, 

"l"max(T ) 1.37 X 10 .4 
- -  - ( 1 7 )  

G 15.8 x area (S) x G 

area (S), the area of  a shearon, is the diameter of  
the chain times the repeat distance along the 
chain = 5.4 x 10 -16cm 2. G, shear modulus of  
polyethylene, is 4.3 x 109Nm -2 at 0 K 

"l~max (T)  

G 
- 0.37. (18) 

This value is about equal to the last result based on 
the breaking of  seven bonds. 

Argon [3] calculated the stress to pull a chain 
within an amorphous polymer. His yield point 
calculation is based only on a tubon type motion. 

*1 dyne = 10-SN. 

He assumed that the motion occurred via the 
mechanism of.nucleating and propagating a pair 
of  wedge disclination. His result in a later paper 

is [10] 

Tmax 0.077 
- at  O K  ( 1 9 )  

G (1 -- v) 

where u = Poisson's ratio. A best value for p = 0.37 
rather than 0.3 as used by Argon so that 

e~rnax 
- 0.122 (20) 

G 

We now can calculate the yield point using 
Equation 16. A lower limit comes from Argon's 
result and the estimate of  5% tubon motion, and 
the upper limit uses Kausch and Becht's results 
with 10% tubon moton  

'/'max < 0 .064- -0 .092  (21) 
G 

The lower limit for '~max/G should be less than 
0.064 since the value of  Tmax(S)/G that was used 
is an upper limit since it is based on the perfect 
crystal. It is expected that the tubon resistance 
depends on packing more than the shearon resist- 
ance. Since tubon resistance involves an expansion 
of  material around the tubon, it would depend on 
both G and Poisson's ratio. The theoretical results 
will now be compared to existing experimental 
data. 

3. Comparison of theory and experimental 
data 

A review was made of  the data on yield point 
against temperature for linear polymers. Most 
data was for yielding under a uniaxial stress. The 
yield process was generally interrupted by brittle 
fracture at temperatures. The yield points were 
extrapolated to OK using a linear extrapolation 
of  the data points at the lowest temperatures. The 
yield point in simple tension or compression was 
converted to a shear yield point. The conversion 
required an assumption about the yield criterion 
for the polymer. The work by Bowden and Jukes 
[15] was used as a guide as to whether a modified 
von-Mises or modified Tresca criterion was 
applicable. 

[1 -+ ~t/(3)1/2] Omax 
e'l~m a x = (3)1/2 

modified von-Mises 

2 2 5 1  



T A B L E I I Yield points at 0 K by extrapolation 

Polymer Source Test Omax(GPa) Yield g Tmax(GPa) 
criterion 

PS [ 16 ] compression 0.30 Tresca 0.25 0.13 
PS [ i 7 ] compression 0.27 Tresca 0.25 0.11 
PMMA [18] compression 0.82 von-Mises 0.158 0.43 
PMMA [19] compression 0.87 von-Mises 0.158 0.45 
PMMA [20] compression 0.73 von-Mises 0.158 0.38 
PC [21 ] shear 0.18 - - 0.18 
PC [22] tension 0.26 von-Mises 0.12 0.16 
PC [23] tension and 0.30 (av) von-Mises - 0.17 

co mpression 
PET [22] tension 0.24 von-Mises 0.09 0.15 
PCTFE [24] tension 0.25 von-Mises 0.12 0.15 
PE (high [25 ] tension 0.20 von-Mises below 0.12 

density) 0.05 
PP (isotactic [26] tension 0.11 von-Mises 0.12 0.068 

quenched) 

(1 + 21a/3)Omax 
Tmax 

2 

modified Tresca 

where p = dTmax/dP the change in shear yield 
point with hydrostat ic  pressure and om~, is the 
yield point under a uniaxial stress. The positive sign 
is for tension and the negative for compression. 

The results are shown in Table II. The von-Mises 
criterion was used when it was not known which 
one applied because most investigations favour the" 
von-Mises criterion. The p values from the Bowden 
and Jukes [15] paper were used. I f p  was not avail- 
able, then an average value of  0.12 was used. 

The shear modulus at 0 K  was obtained from 
the literature (Table III). The shear modulus was 
used which most closely corresponded to the 
morphology of  the polymers presented in Table II. 

T A B L E I I I Shear modulus at 0 K and Poisson's ratio 

Polymer Source G(GPa) Source v 

PS [271 1.7 
PS [28] 1.8 
PS [291 1.7 
PMMA [30]* 3.3 
PMMA [31] 3.0 
PC [32]* 3.3 
PC [331 3.5 
PET [ 34 ] * 1.5 
PET [22] 1.7 
PCTFE [35]* 2.3 
PE (high [36] 4.0 

density) 
PE [37]* 4.7 
PP (isotactic- [381" 2.3 

quenched) 

[42] 
[411 

t311 

[331 

0.33 
0.33-0.036 

0.34 

0.43 

*Data obtained from N. G. McCrum et al. [40]. 
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The extrapolat ion of  the data to 0 K  was done 
with greater confidence than for the yield point  
because the data generally existed for temperatures 
down to about 77K.  Where data existed from 
several investigations, those results were omit ted 
which greatly varied from the average value. 

Poisson's ratios for the polymers are also shown 
in Table III. The values are for room temperature.  
As shown by Yee and Takemori [31], Poisson's 
ratio does not vary greatly with temperature.  
The average value of  Poisson's ratio from all the 
available data was 0.38 +- 0.04. 

The values of ~rnax/G at OK are shown in 
Table VI as calculated from Tables II and III. The 
average values of  Tm~, and G were used for each 
polymer. Also shown in Table IV are the predic- 
tions by Argon [10] based on the equation 
Tma~/G=O.077/(1--v) .  Argon used 0.3 for 
Poisson's ratio but  in Table IV the actual values 
are used or if not available an average value of  
0.37. Argon also systematically reduced the 
experimental data by 8 to 20% in order to get a 
better  fit with his theory.  Table IV shows that 
the present theory is in better  agreement with 
the experimental data than the Argon theory.  
The Argon theory gives a high value because it is 
based only on tubon type motion.  It is important  
to realize that there are significant differences 
among the polymers which no doubt  are related to 
the detailed chemistry of  the molecular chain and 
which has not been considered in the theory.  

4. Discussion 
The displacment of  the molecules in an amorphous 
polymer under a shear stress in the elastic regime 



TABLE IV 

Polymer Tmax/G 0.077, 
(Experimental) Tmax/G = (Argon [ 10 ] ) 1--v 

PS 0.069 0.12 
PMMA 0.133 0.11 
PC 0.050 0.14 
PET 0.094 0.12 
PET* 0.088 0.12 
PCTFE 0065 0.12 
PE (high density) 0.027 - 
PP (isotactic-quenched) 0.030 0.12 
Average (excluding PE)t 0.076 +- 0.03 Present theory < 0.064-0.092 

*[3] based on yield data by Foot and Ward. 
"~PE was excluded because it is highly crystalline. 

has been analysed in terms of three modes of 
motion, shearons, rotons, and tubons. The shearon 
or intermolecular shear accounts for about 90% of 
the motion and the remaining 10% is divided 
between rotons and tubons. All three modes 
occur co-operatively so that the strain up to the 
yield point is essentially homogeneous except 
for a small amount of motion which is out of 
phase with the stress. This out of phase motion 
produces the internal friction effects. The import- 
ant point about the strain up to the yield point 
is that it is not considered to be produced by the 
nucleation and long range propagation of a defect. 
The point is supported by the fact that the exper- 
imental values of Tma~/G agree with theoretical 
value based on homogeneous strain up to the 
yield point. The existence of non-homogeneous 
plastic strain in the form of shear bands does not 
invalidate the existence of nearly homogeneous 
elastic strain shear up to the yield point. 

The theoretical results for Tmax/G applies at all 
temperatures below Tg in that it represents the 
value of Tmax/G that is expected in the absence of 
thermal activation. It is the limiting value expected 
at very high strain rates. The theory may, however, 
not be applicable near Tg because diffusive non- 
homogeneous modes of deformation may pre- 
dominate at higher temperatures. 

It is important to note that temperature effects 
the yield point in two ways: 

1. There is the intrinsic effect from the change 
in modulus with temperature and this is accounted 
for in the theory by using the ratio Tmax/G as the 
measure for yielding. 

2. There is the extrinsic effect of thermal 
activation as described by the Eyring formalism. 
In another paper the effect of thermal activation 
will be considered. The present model provides a 

molecular interpretation for the activation energy 
to be used in the Eyring equation. 

The Yannas and Lunn [2] model of chain twist- 
ing (strophons) is also based on the Lennard-Jones 
potential and predicts a value of 0.03 for "l~max/G. 
In this model tubon motion is neglected. Also it 
is not clear how the twisting of individual chains 
is related to the macroscopically applied shear 
stress. 

The Bowden and Raha [4] theory is not a 
molecular model in that it considers the polymer 
as a continuum. The dislocation is introduced as 
the mechanism of strain. We do not think that 
dislocation motion theory offers the best approach 
for understanding yielding in amorphous polymers. 
A direct approach in terms of the totality of 
molecular motions appears to be more appro- 
priate. The Argon model is based essentially on 
tubon type motion and completely neglects the 
dominant low resistance intermolecular shear 
provided by shearons. That is one reason why 
the Argon theory over estimates the experimental 
values of Tmax/G. The other reason is that Argon 
used linear elastic theory. Argon's theory offers 
a means for estimating tubon resistance. 

The present theory has one outstanding 
deficiency in that chain flexibility is not part of 
the theory. No doubt roton resistance and the 
resistance of a chain link as it turns the corner 
from tubon to shearon motion would depend on 
chain flexibility. Perhaps the range of exper- 
imental value for "f'max/G for the various polymers 
depends partly on differences in chain flexibility. 
In this model, roton motion was presented in 
terms of a rigid rod rotating with the applied 
shear. Most likely the roton moves in a more 
flexible way. 

Another weakness of the theory is in the crude- 
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ness of the calculation for the relative amounts o f  
shearon, roton and tubon motion. That shearon 
motion dominates is partly based on analysis and 
partly on the intuitive visualization of the motion 
of a random array of flexible chains under an 
applied shear stress. The division of motions into 
shearons, rotons,  and tubons is a useful device 
for analysing the complexities of motions during 
the shearing of an amorphous polymer. 

Acknowledgements 
This work was done on sabbatical leave at the 
University of Leeds. Professor I. M. Ward provided 
pleasant and supportive conditions for research 
along with stimulating discussions. Dr R. A. 
Duckett was very helpful and provided many 
discussions. The criticism of Professor F. C. Frank 
was much appreciated. Support was provided by 
the Gas Research Institute. 

References 
1. R.E.  ROBERTSON, J. 

2. 

3. 
4. 
5. 
6. 
7. 

8. 
9. 

10. 

11. 

12. 
13. 

14. 

15. 

16. 

Chem. Phys. 44 (1966) 
3950. 
I. V. YANNAS and A. C. LUNN, Polym. Prepr. 16 
(1975) 564. 
A. S. ARGON, Phil. Mag. 28 (1973) 839. 
P. B. BOWDEN and R. RAHA, ibid. 29 (1974) 149. 
N. BROWN, Bull. Amer. Phys. Soc. 16 (1971) 428. 
S. H. JOSEPH, J. Poly,, Sci. Phys. 16 (1978) 1071. 
A. KELLY, "Strong Solids", 2nd edn. (Clarendon 
Press, Oxford, 1973). 
J. FRENKEL, Z. Phys. 37 (1926) 572. 
S. S. BRENNER, J. App. Phys. 27 (1956) 1484. 
A. S. ARGON, "Glass Science and Technology" 
Vol. 5 (Academic Press, New York, 1980) Chap. 3. 
J. K: MACKENZIE, PhD thesis, University of 
Bristol (1949). 
W. R. TYSON, Phil. Mag. 14 (1966) 925. 
J. D. BERNAL, Proc. Roy. Soc. (London) A280 
(1964) 299. 
H. H. KAUSCH and J. BECHT, "Deformation and 
Fracture of High Polymers", edited by H. H. Kausch, 
J. A. Hassel and R. J. Jaffee (Plenum Press, New _ 
York, London, 1973) p. 317. 
P. B. BOWDEN and J. A. JUKES, J. Mater. Sci. 7 
(1972) 52. 
P. B. BOWDEN and S. RAHA, Phil. Mag. 22 (1970) 
463. 

17. J .P.  CAVROT, J. HAUSSY, J. M. LEFEBVRE and 
B. ESCAIG, Mater. Sci. Eng. 36 (1978) 95. 

18. C. BAUWENS-CROWET, Z Mater. Sci. 8 (1973) 
968. 

19. J. HAUSSY, J.P. CAVROT, B. ESCAIG and 
J. M. LEFEBVRE, J. Poly. Sci, 18 (1980) 311. 

20. P. BEARDMORE, Phil. Mag. 19 (1969) 389. 
21. W. WU and A. P. L. TURNER, J. Poly. Sci-Phys. Ed. 

13 (1975) 19. 
22. J .R.  KASTELIC and E; BAER, Jr. Macromol. 

Sci-Phys. B7(4) (1973) 679. 
23. C. BAUWENS-CROWET, J.C. BAUWENS and 

G. HOLMES, J. Mater. Sci. 7 (1972) 176. 
24. Y. IMAI and N. BROWN, Polymer 18 (1977) 298. 
25. E. KAMEI and N. BROWN, Research in Progress, 

University of Pennsylvania (1982). 
26. H.G. OLF and A. PETERLIN, J. Poly, Sci. Phys. 

Ed. 12 (1974) 2209. 
27. J. F, RUDD and E. F. GURNEE, J. Appl. Phys. 28 

(1957) 1096. 
28. R.J.  ANGELO, R. M. IKEDA and M. L.WALLACH, 

Polymer 6 (1965) 141. 
29. R. BUCHDAHL, Rev. ScL Inst. 41 (1970) 1342. 
30. W.G. GALL and N. G. McCRUM, J. Polym. Sci. 50 

(1961) 489. 
31. A.F.  YEE and M. T. TAKEMORI, J. Poly. Sci-Phys. 

Ed. 20 (1982) 205. 
32. K.H. ILLERS and H. BREVER, Kolloid Z. 176 

(1961) 110. 
33. A.F.  YEE and S.A. SMITH, Macromolecules 14 

(1981)54. 
34. K.H. ILLERS and H. BREUER, J. Colloid Sci. 18 

(1963) 1. 
35. N.G. MeCRUM, J. Polym. ScL 60 (1962) 53. 
36. K.H. ILLERS, Kolloid-ZZ. Polym. 231 (1969) 622. 
37. H.A. FLOCKE, ibid. 180 (1962) 188. 
38. E. PASSAGLIA and G. M. MARTIN, J. Res. Nat. 

Bur. Stand. 68 (1964) 519. 
39. I.G. GILMOUR, A. TRAINOR and R. N. HAWARD, 

J. Poly, Sci-Phys. 12 (1974) 1939. 
40. N.G. McCRUM, B.E. READ and G. WILLIAMS, 

"Anelastic and Dielectric Effects in Polymeric 
Solids" (John Wiley and Sons, London, New York, 
1967). 

41. L.E. NIELSEN, Trans. Soc. Rheol. 9 (1965) 243. 
42. R.W. WARFIELD, J. CUEVAS and F. R. BARNET, 

J. Appl. Polym. Sci. 12 (1968) 1147. 

Received 2 August 
and accepted 11 November 1982 

2254 


